Zigzag Persistence via Reflections and Transpositions

نویسندگان

  • Clément Maria
  • Steve Oudot
چکیده

We introduce a new algorithm for computing zigzag persistence, designed in the same spirit as the standard persistence algorithm. Our algorithm reduces a single matrix, maintains an explicit set of chains encoding the persistent homology of the current zigzag, and updates it under simplex insertions and removals. The total worst-case running time matches the usual cubic bound. A noticeable difference with the standard persistence algorithm is that we do not insert or remove new simplices ”at the end” of the zigzag, but rather ”in the middle”. To do so, we use arrow reflections and transpositions, in the same spirit as reflection functors in quiver theory. Our analysis introduces new kinds of reflections in quiver representation theory: the ”injective and surjective diamonds”. It also introduces the ”transposition diamond” which models arrow transpositions. For each type of diamond we are able to predict the changes in the interval decomposition and associated compatible bases. Arrow transpositions have been studied previously in the context of standard persistent homology, and we extend the study to the context of zigzag persistence. For both types of transformations, we provide simple procedures to update the interval decomposition and associated compatible homology basis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of Zigzag Persistence to Topological Data Analysis

The theory of zigzag persistence is a substantial extension of persistent homology, and its development has enabled the investigation of several unexplored avenues in the area of topological data analysis. In this paper, we discuss three applications of zigzag persistence: topological bootstrapping, parameter thresholding, and the comparison of witness complexes.

متن کامل

Zigzag Persistence

We describe a new methodology for studying persistence of topological features across a family of spaces or point-cloud data sets, called zigzag persistence. Building on classical results about quiver representations, zigzag persistence generalises the highly successful theory of persistent homology and addresses several situations which are not covered by that theory. In this paper we develop ...

متن کامل

Stable Signatures for Dynamic Metric Spaces via Zigzag Persistent Homology

When studying flocking/swarming behaviors in animals one is interested in quantifying and comparing the dynamics of the clustering induced by the coalescence and disbanding of animals in different groups. Motivated by this, we study the problem of obtaining persistent homology based summaries of time-dependent metric data. Given a finite dynamic metric space (DMS), we construct the zigzag simpl...

متن کامل

Algebraic Stability of Zigzag Persistence Modules

The stability theorem for persistent homology is a central result in topological data analysis. While the original formulation of the result concerns the persistence barcodes of R-valued functions, the result was later cast in a more general algebraic form, in the language of persistence modules and interleavings. In this paper, we establish an analogue of this algebraic stability theorem for z...

متن کامل

Duality and Weyl Symmetry of 7-brane Configurations

Extending earlier results on the duality symmetries of three-brane probe theories we define the duality subgroup of SL(2,Z) as the symmetry group of the background 7branes configurations. We establish that the action of Weyl reflections is implemented on junctions by brane transpositions that amount to exchanging branes that can be connected by open strings. This enables us to characterize dual...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015